South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, Proceedings (2022), pp. 235-246

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

2-STRONG PRODUCT AND CONNECTEDNESS

H. S. Mehta and J. George*

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Anand - 388120, Gujarat, INDIA

E-mail: hs_mehta@spuvvn.edu

*Shri Alpesh N. Patel, Post Graduate Institute of Science & Research, Anand - 388001, Gujarat, INDIA

E-mail: johnsongeorge157@gmail.com

(Received: Apr. 08, 2022 Accepted: Aug. 05, 2022 Published: Aug. 30, 2022)

Special Issue

Proceedings of National Conference on "Emerging Trends in Discrete Mathematics, NCETDM - 2022"

Abstract: Among all the product of two graphs G and H, the Cartesian product $G \times H$, tensor product $G \otimes H$ and strong product $G \boxtimes H$ are very well known and studied in detail. Recently, Cartesian product and tensor product were generalized by defining 2-Cartesian product and 2-tensor product and their properties were studied. In this paper, we have generalized strong product of two graphs G and G by defining 2-strong product $G \boxtimes_2 H$ and studied some basic graph parameters like connectedness and distance.

Keywords and Phrases: Strong product of graphs, connected graph, distance, diameter, eccentricity, radius.

2020 Mathematics Subject Classification: 05C07, 05C12.

1. Introduction and Preliminaries

Product of two graphs G and H has been defined in many different ways in literature. Among all the products, Cartesian product $G \times H$, tensor product

 $G \otimes H$, strong product $G \boxtimes H$ and lexicographic product $G \circ H$ are studied in detail ([5] & [6]). Cartesian product and tensor product have been generalized by defining 2-Cartesian product $G \times_2 H$ and 2-tensor product $G \otimes_2 H$ in [2] & [3] and basic parameters of both the graphs have been obtained in terms of the parameters of G and G.

In this paper, we generalize strong product of two graphs G and H by defining 2-strong product $G \boxtimes_2 H$ and study some basic graph parameters.

For any graph to be called connected, every vertex pair in it should be connected by a path. Distance between two vertices x and x' in graph G is defined as the length of shortest path between x and x'. For rest of the basic definitions in graph, we refer [4].

Definition 1.1. Let G = (V(G), E(G)) and H = (V(H), E(H)) be two connected graphs. Then 2-strong product of G and H is a graph denoted by $G \boxtimes_2 H$ with vertex set as $V(G \boxtimes_2 H) = V(G) \times V(H)$ and edge set as $E(G \boxtimes_2 H) = \{(x, y)(x', y') : (x = x' \& d_H(y, y') = 2) \text{ or } (d_G(x, x') = 2 \& y = y') \text{ or } (d_G(x, x') = 2 \& d_H(y, y') = 2)\}$. Equivalently, $d_G(x, x') \in \{0, 2\}$ and $d_H(y, y') \in \{0, 2\}$.

If we replace 2 by 1, we get the definition of usual strong product $G \boxtimes H$.

Remark 1.2.

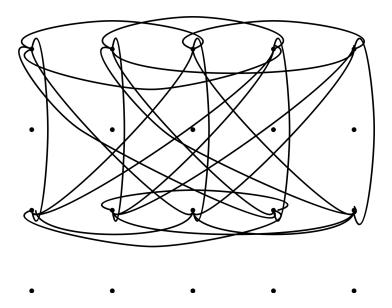
1.
$$|E(G \boxtimes_2 H)| = |V(G)||N^2(H)| + |V(H)||N^2(G)| + 2|N^2(G)||N^2(H)|,$$

where $N^2(G)$ denotes the collection of all distinct pair of vertices which are at distance 2. Hence, we always assume that $N^2(G)$ and $N^2(H)$ are non-empty sets. Otherwise, we get $G \boxtimes_2 H$ as null graph.

- 2. $G \boxtimes_2 H \cong H \boxtimes_2 G$.
- 3. $G \boxtimes_2 H = (G \times_2 H) \cup (G \otimes_2 H)$, where $G \times_2 H$ is the 2-Cartesian product of G and H, $G \otimes_2 H$ is the 2-tensor product of G and H and $G \otimes_2 H$ and $G \otimes_2 H$ ([2], [3]).

Example 1.3.

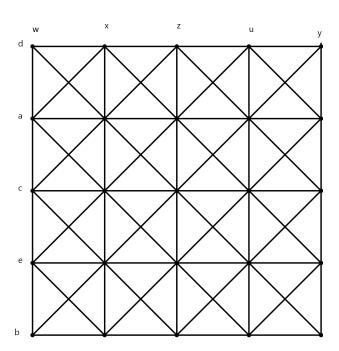
- 1. $P_4 \boxtimes_2 C_4$ has four components as K_4 .
- 2. One component of 2-strong product of two graphs P_4 and C_5 , $P_4 \boxtimes_2 C_5$ is shown below.



3. Let G & H be the graphs shown below.

Then, $G \boxtimes_2 H$ is shown below.

Figure 2: $G \boxtimes_2 H$



First, we obtain basic graph parameters of $G \boxtimes_2 H$ such as degree of vertex, regularity and Eulerian property.

Proposition 1.4. Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. Then, for $(x, y) \in V(G \boxtimes_2 H)$,

$$\deg_{G\boxtimes_2 H}((x,y)) = \deg_2(x) + \deg_2(y) + \deg_2(x) \deg_2(y),$$

where $\deg_2(x) = |N^2(x)|$ and $N^2(x) = \{x' \in V(G) : d_G(x, x') = 2\}.$

Proof. Let $(x,y) \in V(G \boxtimes_2 H)$. Then all vertices (x,y'), where $y' \in V(H)$ with $d_H(y,y') = 2$ are adjacent to (x,y). Note that there are $deg_2(y)$ such vertices. Similarly, all vertices (x',y), where $x' \in V(G)$ with $d_G(x,x') = 2$ are adjacent to (x,y). There are $deg_2(x)$ such vertices. Also, note that $(x',y') \in V(G \boxtimes_2 H)$ where $d_G(x,x') = 2$ and $d_H(y,y') = 2$ is adjacent to (x,y) and there are $deg_2(x)deg_2(y)$ such vertices. Thus, degree of (x,y) in $G \boxtimes_2 H$ is $deg_2(x) + deg_2(y) + deg_2(x)deg_2(y)$.

Now, we obtain a sufficient condition of regularity in $G \boxtimes_2 H$, using the following definition of second regular graph given in [7].

Definition [7]. A graph G = (V(G), E(G)) is said to be second regular with

regularity k if $deg_2(x) = k$, for all $x \in V(G)$.

Corollary 1.5. If graphs G and H are second regular graphs with regularity k_1 and k_2 respectively, then $G \boxtimes_2 H$ is $k_1 + k_2 + k_1k_2$ regular graph.

In general, if G and H are Euler graphs, then $G \boxtimes_2 H$ may not be an Euler graph.

Example 1.6. Let G = H be the graph shown below.

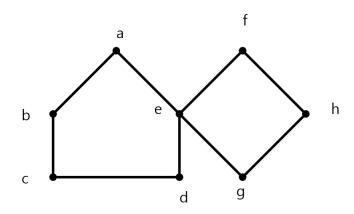


Figure 3: G = H

Then, G and H are Euler graphs, but $G \boxtimes_2 H$ is not Euler, as $deg_{G\boxtimes_2 H}(e,e)$ is odd, using Proposition 1.4.

Now, we give a characterization for $G \boxtimes_2 H$ to be Euler graph, in terms of 2 degree of a vertex.

Theorem 1.7. Let G = (V(G), V(G)) and H = (V(H), E(H)) be two connected graphs, such that $G \boxtimes_2 H$ is connected. Then, $deg_2(x)$ is even for every $x \in V(G)$ and $deg_2(y)$ is also even for every $y \in V(H)$ if and only if $G \boxtimes_2 H$ is an Euler graph.

Proof. Follows from Proposition 1.4.

Remark 1.8. Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs with $N^2(x) \neq \emptyset$ for some $x \in V(G)$ and $N^2(y) \neq \emptyset$ for some $y \in V(H)$. Then K_4 is a subgraph of $G \boxtimes_2 H$ and hence $G \boxtimes_2 H$ is a non-bipartite graph.

2. Distance and Connectedness

In this section, we obtain the distance formula and discuss connectedness of $G \boxtimes_2 H$.

In usual strong product $G \boxtimes H$ of two graphs G and H, distance formula is

given as follows:

Theorem. [5] For two vertices (x, y) and (x', y') in $G \boxtimes H$,

$$d_{G\boxtimes H}((x,y),(x',y')) = \max\{d_G(x,x'),d_H(y,y')\}.$$

To obtain distance formula for $G \boxtimes_2 H$, we shall need the following definition.

Definition. [7] Let G be a connected graph with $N^2(u) \neq \emptyset$, $\forall u \in V(G)$ and let $x, x' \in V(G)$. Then, $d'_G(x, x')$ is defined as the length of the shortest walk $W: x = w_0 \to w_1 \to \ldots \to w_{2k} = x'$ between x and x' of the form $2k \ (k \in \mathbb{N})$ in which $d(w_i, w_{i+2}) = 2$, $i = 0, 2, 4, \ldots, 2k - 2$.

If there is no such walk between x and x', then $d'_G(x,x') = \infty$.

Remark 2.1.

- 1. For any $x, x' \in V(G)$, $d_G(x, x') \leq d'_G(x, x')$.
- 2. For $x, x' \in V(G)$, if $d_G(x, x')$ is even, then $d_G(x, x') = d'_G(x, x')$ and if $d_G(x, x')$ is odd, then $d_G(x, x') < d'_G(x, x')$.
- 3. For a connected bipartite graph G, if x and x' are in same partite sets of G, then $d_G(x,x')$ is even and hence $d'_G(x,x')=d_G(x,x')<\infty$, whereas, if x and x' are in different partite sets, then $d_G(x,x')<\infty$ but $d'_G(x,x')=\infty$.

Example 2.2. For $G = C_{2n+1}$, if $d_G(x, x')$ is odd, then $d'_G(x, x') = (2n + 1) - d_G(x, x') > d_G(x, x')$.

Proposition 2.3. For a connected, non bipartite and triangle free graph G, $d'_G(x,x') < \infty$ for every $x,x' \in V(G)$.

Proof. Let $x, x' \in V(G)$ and C be an odd cycle in G. If $d_G(x, x')$ is even, then $d'_G(x, x') = d_G(x, x') < \infty$. Now, if $d_G(x, x')$ is odd, then traversing the cycle C, there is an even length walk, say W between x and x'. Let

 $W: x = u_0 \to u_1 \to u_2 \to \ldots \to u_{2k} = x'$ be the walk. Then, note that, if $d_G(u_i, u_{i+2}) = 1$ for some even $i \leq 2k$, then $u_i, u_{i+1} \& u_{i+2}$ forms a triangle in G, which is not possible. Hence, $d_G(u_i, u_{i+2}) = 2$, $i = 0, 2, 4, \ldots 2k - 2$ and therefore, $d'_G(x, x') \leq 2k < \infty$.

Using this definition of d'(x, x'), we obtained the distance formula for two vertices in $G \boxtimes_2 H$.

Theorem 2.4. Let G and H be two graphs with $N^2(x) \neq \emptyset$ for all $x \in V(G) \cup V(H)$. Then for $(x, y), (x', y') \in V(G \boxtimes_2 H)$,

$$d_{G\boxtimes_2 H}((x,y),(x',y')) = \max\{\frac{d'_G(x,x')}{2},\frac{d'_H(y,y')}{2}\}.$$

Proof. Suppose $d'_G(x,x') = 2m < \infty$ and $d'_H(y,y') = 2n < \infty$. Consider, the following two walks corresponding to $d'_G(x,x')$ and $d'_H(y,y')$ with $d_G(x_i,x_{i+2}) = 2 = d_H(y_i,y_{i+2})$ $(i=0,2,4,\ldots)$:

$$P: x = x_0 \to x_1 \to x_2 \to \dots \to x_{2m-1} \to x_{2m} = x' \& Q: y = y_0 \to y_1 \to y_2 \to \dots \to y_{2n-1} \to y_{2n} = y'$$

Without loss of generality, assume that $m \geq n$. Now,

 $(x,y) \to (x_2,y_2) \to (x_4,y_4) \to \dots \to (x_{2n},y_{2n}) \to (x_{2n+2},y_{2n}) \to \dots \to (x',y')$ is a walk in $G \boxtimes_2 H$ of length m as $d_G(x_i,x_{i+2}) = d_H(y_i,y_{i+2}) = 2$. Thus, $d_{G\boxtimes_2 H}((x,y),(x',y')) \le m = \frac{d'_G(x,x')}{2} = \max\{\frac{d'_G(x,x')}{2},\frac{d'_H(y,y')}{2}\} < \infty$.

Conversely, let $d_{G\boxtimes_2 H}((x,y),(x',y'))=m<\infty$ and let $P:(x,y)\to (x_1,y_1)\to (x_2,y_2)\to\ldots\to (x_{m-1},y_{m-1})\to (x',y')$ be corresponding path in $G\boxtimes_2 H$. Now, consider the paths

$$P_G(P): x = x_0 \to x_1 \to x_2 \to \dots x_{m-1} \to x_m = x' \& P_H(P): y = y_0 \to y_1 \to y_2 \to \dots \to y_{m-1} \to y_m = y'$$

with $d_G(x_i, x_{i+1}) = 0$ or 2 for every i and $d_H(y_i, y_{i+1}) = 0$ or 2 for every i.

Case 1. $x = x_1 = x_2 = \ldots = x_{m-1} = x_m = x'$

In this case, $d_G(x, x') = 0$ and hence $d'_G(x, x') = 0$ by definition. Also, $y_i \neq y_j$, for any $1 \leq i, j \leq m$, $(i \neq j)$ and hence $d_H(y_{i+1}, y_i) = 2$ (i = 0, 2, ...). Now, as $d_H(y_{i+1}, y_i) = 2$ for every i, we have $y_i \to a_{i+1} \to y_{i+1}$ for every i, for some $a_{i+1} \in V(H)$. Thus, $y = y_0 \to a_1 \to y_1 \to a_2 \to y_2 \to ... \to ... a_k \to y_m = y'$ with $d_H(y_i, y_{i+1}) = 2$ for every i. Hence, we get $d'_H(y, y') \leq 2m$. Therefore, $\frac{d'_H(y, y')}{2} \leq m = d_{G\boxtimes_2 H}((x, y), (x', y'))$. Also, $\frac{d'_G(x, x')}{2} = 0$. Thus, $\max\{\frac{d'_H(y, y')}{2}, \frac{d'_G(x, x')}{2}\} \leq d_{G\boxtimes_2 H}((x, y), (x', y'))$.

Similarly, if $y = y_1 = y_2 = \dots y_{m-1} = y_m = y'$, then $\max\{\frac{d'_H(y,y')}{2}, \frac{d'_G(x,x')}{2}\} \le d_{G\boxtimes_2 H}((x,y), (x',y'))$.

Case 2. There is at least one i, such that $x_i \neq x$ and j such that $y_j \neq y$. Note that in this case, from $P_G(P)$ and $P_H(P)$, we get two subsequences $x = u_0 \to u_1 \to u_2 \to \dots u_{l-1} \to u_l = x'$ with $d_G(u_i, u_{i+1}) = 2$ for every i and $y = v_0 \to v_1 \to v_2 \to \dots v_{k-1} \to v_k = y'$ with $d_H(v_i, v_{i+1}) = 2$ for every i. Now as $d_G(u_i, u_{i+1}) = 2$ and $d_H(v_i, v_{i+1}) = 2$ for every i, there is $a_{i+1} \in V(G)$ and $b_{i+1} \in V(H)$ such that $u_i \to a_{i+1} \to u_{i+1}$ and $v_i \to b_{i+1} \to v_{i+1}$. Thus, we get two walks, $x = u_0 \to a_1 \to u_1 \to a_2 \to u_2 \to \dots a_l \to u_l = x'$ and $y = v_0 \to b_1 \to v_1 \to b_2 \to v_2 \to \dots \to b_k \to v_k = y'$. Thus $d'_G(x, x') \leq 2l$ and $d'_H(y, y') \leq 2k$. Therefore, $\frac{d'_G(x,x')}{2} \le l \le m$ and $\frac{d'_H(y,y')}{2} \le k \le m$. Thus, $\max\{\frac{d'_G(x,x')}{2},\frac{d'_H(y,y')}{2}\} \le m$.

Now, suppose $d'_G(x,x')=\infty$ or $d'_H(y,y')=\infty$. If possible, suppose $d_{G\boxtimes_2 H}((x,y),(x',y'))=m<\infty$. Then, using arguments given in converse part, $d'_G(x,x')<\infty$ and $d'_G(y,y')<\infty$, which is a contradiction. Now, suppose $d_{G\boxtimes_2 H}((x,y),(x',y'))=\infty$. If possible, suppose, $d'_G(x,x')<\infty$ and $d'_H(y,y')<\infty$. Then, by arguments given in first part, $d_{G\boxtimes_2 H}((x,y),(x',y'))<\infty$. Thus, $d'_G(x,x')=\infty$ and $d'_H(y,y')=\infty$.

Now, we obtain the connectedness of $G \boxtimes_2 H$.

Theorem 2.5. Let G and H be two connected graphs with $N^2(u) \neq \emptyset$ $\forall u \in V(G) \cup V(H)$.

- 1. If G and H are both bipartite graphs, then $G \boxtimes_2 H$ has four components.
- 2. If one of the graph G or H is non-bipartite triangle free and other is bipartite, then $G \boxtimes_2 H$ has 2 components.
- 3. If G and H both are non-bipartite triangle free graphs, then $G \boxtimes_2 H$ is connected.

Proof.

1. Let U_1 , U_2 be two partite sets of G and V_1 , V_2 be two partite sets of H and let $W_{ij} = U_i \times V_j$ for $1 \leq i, j \leq 2$. Now, if (x, y), (x', y') are in different W_{ij} , then either x and x' are in different partite sets of G or y and y' are in different partite sets of H. Therefore, either $d'_G(x, x') = \infty$ or $d'_H(y, y') = \infty$ and hence, by above theorem, $d_{G\boxtimes_2 H}((x, y), (x', y')) = \infty$. Thus, $G\boxtimes_2 H$ has at least four components W_{ij} .

Now, if (x, y) and (x', y') are in same W_{ij} , $(i, j \in \{1, 2\})$, then x & x' are in same partite set of G and y & y' are in same partite set of H. Thus, $d'_G(x, x') < \infty$ and $d'_H(y, y') < \infty$ and hence, $d_{G\boxtimes_2 H}((x, y), (x', y')) < \infty$, i.e., (x, y) and (x', y') are connected by a path in $G\boxtimes_2 H$. Therefore, there are exactly four components in $G\boxtimes_2 H$.

2. Let G be a bipartite graph and let U_1 and U_2 be two partite sets of G and let $W_i = U_i \times V(H)$ for $1 \le i \le 2$. If (x, y) and (x', y') are in different W_i , then x and x' are in different partite sets of G and hence, $d_G(x, x') = \infty$. Therefore, $d_{G\boxtimes_2 H}((x, y), (x', y')) = \infty$ and so, there are at the least two components in $G\boxtimes_2 H$.

Further, if (x, y) and (x', y') are in same W_i , $1 \le i \le 2$, then x and x' are in same partite set and hence, $d'_G(x, x') < \infty$. Also, as H is non bipartite and triangle free, by Proposition 2.3, $d'_H(y, y') < \infty$. Thus, $d_{G\boxtimes_2 H}((x, y), (x', y')) < \infty$ and hence (x, y) and (x', y') are connected by a path. Therefore, there are two components in $G\boxtimes_2 H$.

3. Let $(x,y),(x',y') \in V(G \boxtimes_2 H)$. Then, by Proposition 2.3, $d'_G(x,x') < \infty$ and $d'_H(y,y') < \infty$. Thus, $d_{G\boxtimes_2 H}((x,y),(x',y')) < \infty$ and hence, (x,y) and (x',y') are connected by a path. Thus, $G\boxtimes_2 H$ is connected.

3. Diameter, Eccentricity and Radius

In this section, we obtain some more basic graph parameters which are depending on distance between two vertices. For example, diameter, eccentricity and radius.

Definition 2.1. Let G = (V(G), E(G)) be a graph. Then, we define

- 1. 2-diameter of G by $\max\{d'_G(x,y): x,y \in V(G)\}$ and we denote it by $diam_2(G)$.
- 2. 2-eccentricity of a vertex x in G as $\max\{d'_G(x,x'): x' \in V(G)\}$ and we denote it by e'(x).
- 3. 2-radius of G as $\min\{e'(x): x \in V(G)\}$ and we denote it by $rad_2(G)$.
- 4. 2-closed neighborhood of a vertex x in G as $\{x' \in V(G) : d'_G(x, x') \leq i\}$ and we denote it by $N'_i[x, G]$.

If we replace $d'_G(x, x')$ by $d_G(x, x')$ in above definitions, we get the definition of usual diameter. eccentricity, radius and closed neighborhood.

Remark 3.2. In general, diam(G) (or rad(G)) and $diam_2(G)$ (or $rad_2(G)$) are different. Note that, $diam_2(G)$ (or $rad_2(G)$) is always even and if diam(G) (or rad(G)) is even, still $diam_2(G)$ (or $rad_2(G)$) may be different from diam(G) (or rad(G)).

We obtained the following relation between diameter of graph $G \boxtimes_2 H$ and 2-diameter of G and H.

Theorem 3.3. Let G and H be two graphs. Then,

$$diam(G \boxtimes_2 H) = \max\{\frac{diam_2(G)}{2}, \frac{diam_2(H)}{2}\}.$$

Proof. Let $diam(G \boxtimes_2 H) = d$. Then, for any $x, x' \in V(G)$ and $y, y' \in V(H)$, $d_{G \boxtimes_2 H}((x, y), (x', y')) \leq d$. Therefore, by Theorem 2.4, $\max\{\frac{d'_G(x, x')}{2}, \frac{d'_H(y, y')}{2}\} \leq d$.

Thus, $d'_G(x,x') \leq 2d \& d'_H(y,y') \leq 2d$. But, as x,x' and y,y' are arbitrary, $diam_2(G) \leq 2d$ and $diam_2(H) \leq 2d$. Therefore, $\max\{\frac{diam_2(G)}{2}, \frac{diam_2(H)}{2}\} \leq d$. Conversely, let $diam_2(G) = d_1$ and $diam_2(H) = d_2$. Then, for any $(x,y),(x',y') \in V(G\boxtimes_2 H), d'_G(x,x') \leq d_1$ and $d'_H(y,y') \leq d_2$. Therefore, $d_{G\boxtimes_2 H}((x,y),(x',y')) = \max\{\frac{d'_G(x,x')}{2}, \frac{d'_H(y,y')}{2}\} \leq \max\{\frac{d_1}{2}, \frac{d_2}{2}\}$. But, as (x,y) and (x',y') are arbitrary, $diam(G\boxtimes_2 H) \leq \max\{\frac{d_1}{2}, \frac{d_2}{2}\}$.

By similar arguments, the following can be proved.

Theorem 3.4. Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs.

1. For
$$(x,y) \in V(G \boxtimes_2 H)$$
, $ecc(x,y) = \max\{\frac{e'(x)}{2}, \frac{e'(y)}{2}\}$.

2.
$$rad(G \boxtimes_2 H) = \max\{\frac{rad_2(G)}{2}, \frac{rad_2(H)}{2}\}.$$

3. For
$$(x,y) \in V(G \boxtimes_2 H)$$
, $N_i[(x,y), G \boxtimes_2 H] = N'_{2i}[x,G] \times N'_{2i}[y,H]$, where $N_i[x,G] = \{x' \in V(G) : d(x,x') \leq i\}$.

We consider the following non-bipartite graphs:

Definitions [1]

- 1. A wheel graph W_n is a graph with n+1 vertices that contains C_n and one other vertex which is adjacent to every vertex of C_n . The vertex which is adjacent to every vertex is called center vertex.
- 2. The Helm graph H_n is the graph obtained from W_n by adding a pendent edge to each vertex of C_n in W_n .
- 3. The closed Helm graph CH_n is the graph obtained from H_n by adding edges between pendent vertices.

Example 3.5.

Graph	diam(G)	$diam_2(G)$	rad(G)	$rad_2(G)$
$C_{2n+1} \ (n>1)$	n	2n	n	2n
$H_n \ (n \ge 4)$	4	6	2	4
$CH_n \ (n \ge 4)$	4	6	2	4
$P_n \ (n>2)$	n-1	∞	[n]	∞
$K_{m,n} (m, n > 2, m \neq n)$	2	∞	2	∞
$W_n \ (n > 4)$	2	∞	2	∞

References

- [1] Acharya U. P., A study of new generalized product of graphs, Thesis, Sardar Patel University, 2016, India.
- [2] Acharya U. P. and Mehta H. S., 2-Cartesian product of special graphs, Int. J. of Math and Soft Computing, 4(1), (2014), 139-144.
- [3] Acharya U. P. and Mehta H. S., 2-Tensor product of graphs, Int. J. of Math and Scientific Computing, 4(1), (2014), 21-24.
- [4] Balakrishnan R. and Ranganathan K., A textbook of graph theory, Springer, New York, 2000.
- [5] Hammack R., Imrich W. and Klavzar S., Handbook of product graphs, CRC Press, New York 2011.
- [6] Imrich W. and Klavzar S., Product graphs: Structure & recognition, Wiley, New York, 2000.
- [7] Mehta H. S. and Acharya U. P., Degree & distance in 2-Cartesian product of graphs, Research & reviews: Discrete Mathematical structures, 5(3), (2018), 11-14.