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Abstract: Among all the product of two graphs G and H, the Cartesian product
G×H, tensor product G⊗H and strong product G⊠H are very well known and
studied in detail. Recently, Cartesian product and tensor product were generalized
by defining 2-Cartesian product and 2-tensor product and their properties were
studied. In this paper, we have generalized strong product of two graphs G and H
by defining 2-strong product G⊠2H and studied some basic graph parameters like
connectedness and distance.
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1. Introduction and Preliminaries
Product of two graphs G and H has been defined in many different ways in

literature. Among all the products, Cartesian product G × H, tensor product
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G ⊗ H, strong product G ⊠ H and lexicographic product G ◦ H are studied in
detail ([5] & [6]). Cartesian product and tensor product have been generalized by
defining 2-Cartesian product G×2H and 2-tensor product G⊗2H in [2] & [3] and
basic parameters of both the graphs have been obtained in terms of the parameters
of G and H.

In this paper, we generalize strong product of two graphs G and H by defining
2-strong product G⊠2 H and study some basic graph parameters.

For any graph to be called connected, every vertex pair in it should be connected
by a path. Distance between two vertices x and x′ in graph G is defined as the
length of shortest path between x and x′. For rest of the basic definitions in graph,
we refer [4].

Definition 1.1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two connected
graphs. Then 2-strong product of G and H is a graph denoted by G ⊠2 H with
vertex set as V (G⊠2 H) = V (G)× V (H) and edge set as
E(G⊠2 H) = {(x, y)(x′, y′) : (x = x′ & dH(y, y

′) = 2) or (dG(x, x
′) = 2 & y = y′)

or (dG(x, x
′) = 2& dH(y, y

′) = 2)}. Equivalently, dG(x, x′) ∈ {0, 2} and
dH(y, y

′) ∈ {0, 2}.
If we replace 2 by 1, we get the definition of usual strong product G⊠H.

Remark 1.2.

1. |E(G⊠2 H)| = |V (G)||N2(H)|+|V (H)||N2(G)|+
2|N2(G)||N2(H)|,

where N2(G) denotes the collection of all distinct pair of vertices which are at
distance 2. Hence, we always assume that N2(G) and N2(H) are non-empty
sets. Otherwise, we get G⊠2 H as null graph.

2. G⊠2 H ∼= H ⊠2 G.

3. G ⊠2 H = (G ×2 H) ∪ (G ⊗2 H), where G ×2 H is the 2-Cartesian product
of G and H, G⊗2 H is the 2-tensor product of G and H and ∪ denotes the
edge disjoint union of G×2 H and G⊗2 H ([2], [3]).

Example 1.3.

1. P4 ⊠2 C4 has four components as K4.

2. One component of 2-strong product of two graphs P4 and C5, P4 ⊠2 C5 is
shown below.
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3. Let G & H be the graphs shown below.

Figure 1: G H

Then, G⊠2 H is shown below.
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Figure 2: G⊠2 H

First, we obtain basic graph parameters of G ⊠2 H such as degree of vertex,
regularity and Eulerian property.

Proposition 1.4. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs.
Then, for (x, y) ∈ V (G⊠2 H),

degG⊠2H((x, y)) = deg2(x) + deg2(y) + deg2(x) deg2(y),

where deg2(x) = |N2(x)| and N2(x) = {x′ ∈ V (G) : dG(x, x
′) = 2}.

Proof. Let (x, y) ∈ V (G ⊠2 H). Then all vertices (x, y′), where y′ ∈ V (H) with
dH(y, y

′) = 2 are adjacent to (x, y). Note that there are deg2(y) such vertices.
Similarly, all vertices (x′, y), where x′ ∈ V (G) with dG(x, x

′) = 2 are adjacent
to (x, y). There are deg2(x) such vertices. Also, note that (x′, y′) ∈ V (G ⊠2 H)
where dG(x, x

′) = 2 and dH(y, y
′) = 2 is adjacent to (x, y) and there are

deg2(x)deg2(y) such vertices. Thus, degree of (x, y) in G⊠2 H is
deg2(x) + deg2(y) + deg2(x)deg2(y).

Now, we obtain a sufficient condition of regularity in G⊠2H, using the following
definition of second regular graph given in [7].

Definition [7]. A graph G = (V (G), E(G)) is said to be second regular with
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regularity k if deg2(x) = k, for all x ∈ V (G).

Corollary 1.5. If graphs G and H are second regular graphs with regularity k1
and k2 respectively, then G⊠2 H is k1 + k2 + k1k2 regular graph.

In general, if G and H are Euler graphs, then G ⊠2 H may not be an Euler
graph.

Example 1.6. Let G = H be the graph shown below.

Figure 3: G = H

Then, G and H are Euler graphs, but G⊠2 H is not Euler, as degG⊠2H(e, e) is
odd, using Proposition 1.4.

Now, we give a characterization for G ⊠2 H to be Euler graph, in terms of 2
degree of a vertex.

Theorem 1.7. Let G = (V (G), V (G)) and H = (V (H), E(H)) be two connected
graphs, such that G⊠2 H is connected. Then, deg2(x) is even for every x ∈ V (G)
and deg2(y) is also even for every y ∈ V (H) if and only if G ⊠2 H is an Euler
graph.
Proof. Follows from Proposition 1.4.

Remark 1.8. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs with
N2(x) ̸= ∅ for some x ∈ V (G) and N2(y) ̸= ∅ for some y ∈ V (H). Then K4 is a
subgraph of G⊠2 H and hence G⊠2 H is a non-bipartite graph.

2. Distance and Connectedness
In this section, we obtain the distance formula and discuss connectedness of

G⊠2 H.
In usual strong product G ⊠ H of two graphs G and H, distance formula is
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given as follows:

Theorem. [5] For two vertices (x, y) and (x′, y′) in G⊠H,

dG⊠H((x, y), (x
′, y′)) = max{dG(x, x′), dH(y, y

′)}.

To obtain distance formula for G⊠2 H, we shall need the following definition.

Definition. [7] Let G be a connected graph with N2(u) ̸= ∅, ∀u ∈ V (G) and
let x, x′ ∈ V (G). Then, d′G(x, x

′) is defined as the length of the shortest walk
W : x = w0 → w1 → . . . → w2k = x′ between x and x′ of the form 2k (k ∈ N) in
which d(wi, wi+2) = 2, i = 0, 2, 4, . . . , 2k − 2.

If there is no such walk between x and x′, then d′G(x, x
′) = ∞.

Remark 2.1.

1. For any x, x′ ∈ V (G), dG(x, x
′) ≤ d′G(x, x

′).

2. For x, x′ ∈ V (G), if dG(x, x
′) is even, then dG(x, x

′) = d′G(x, x
′) and if

dG(x, x
′) is odd, then dG(x, x

′) < d′G(x, x
′).

3. For a connected bipartite graph G, if x and x′ are in same partite sets of G,
then dG(x, x

′) is even and hence d′G(x, x
′) = dG(x, x

′) < ∞, whereas, if x and
x′ are in different partite sets, then dG(x, x

′) < ∞ but d′G(x, x
′) = ∞.

Example 2.2. For G = C2n+1, if dG(x, x
′) is odd, then

d′G(x, x
′) = (2n+ 1)− dG(x, x

′) > dG(x, x
′).

Proposition 2.3. For a connected, non bipartite and triangle free graph G,
d′G(x, x

′) < ∞ for every x, x′ ∈ V (G).
Proof. Let x, x′ ∈ V (G) and C be an odd cycle in G. If dG(x, x

′) is even, then
d′G(x, x

′) = dG(x, x
′) < ∞. Now, if dG(x, x

′) is odd, then traversing the cycle C,
there is an even length walk, say W between x and x′. Let
W : x = u0 → u1 → u2 → . . . → u2k = x′ be the walk. Then, note that, if
dG(ui, ui+2) = 1 for some even i ≤ 2k, then ui, ui+1 & ui+2 forms a triangle in G,
which is not possible. Hence, dG(ui, ui+2) = 2, i = 0, 2, 4, . . . 2k − 2 and therefore,
d′G(x, x

′) ≤ 2k < ∞.
Using this definition of d′(x, x′), we obtained the distance formula for two ver-

tices in G⊠2 H.

Theorem 2.4. Let G and H be two graphs with N2(x) ̸= ∅ for all x ∈ V (G) ∪
V (H). Then for (x, y), (x′, y′) ∈ V (G⊠2 H),

dG⊠2H((x, y), (x
′, y′)) = max{d′G(x,x′)

2
,
d′H(y,y′)

2
}.
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Proof. Suppose d′G(x, x
′) = 2m < ∞ and d′H(y, y

′) = 2n < ∞. Consider, the
following two walks corresponding to d′G(x, x

′) and d′H(y, y
′) with

dG(xi, xi+2) = 2 = dH(yi, yi+2) (i = 0, 2, 4, . . .):

P : x = x0 → x1 → x2 → . . . → x2m−1 → x2m = x′ &
Q : y = y0 → y1 → y2 → . . . → y2n−1 → y2n = y′

Without loss of generality, assume that m ≥ n. Now,
(x, y) → (x2, y2) → (x4, y4) → . . . → (x2n, y2n) → (x2n+2, y2n) → . . . → (x′, y′) is a
walk in G⊠2 H of length m as dG(xi, xi+2) = dH(yi, yi+2) = 2. Thus,

dG⊠2H((x, y), (x
′, y′)) ≤ m =

d′G(x,x′)

2
= max{d′G(x,x′)

2
,
d′H(y,y′)

2
} < ∞.

Conversely, let dG⊠2H((x, y), (x
′, y′)) = m < ∞ and let

P : (x, y) → (x1, y1) → (x2, y2) → . . . → (xm−1, ym−1) → (x′, y′) be corresponding
path in G⊠2 H. Now, consider the paths

PG(P ) : x = x0 → x1 → x2 → . . . xm−1 → xm = x′ &
PH(P ) : y = y0 → y1 → y2 → . . . → ym−1 → ym = y′

with dG(xi, xi+1) = 0 or 2 for every i and dH(yi, yi+1) = 0 or 2 for every i.
Case 1. x = x1 = x2 = . . . = xm−1 = xm = x′

In this case, dG(x, x
′) = 0 and hence d′G(x, x

′) = 0 by definition. Also, yi ̸= yj,
for any 1 ≤ i, j ≤ m, (i ̸= j) and hence dH(yi+1, yi) = 2 (i = 0, 2, . . .). Now,
as dH(yi+1, yi) = 2 for every i, we have yi → ai+1 → yi+1 for every i, for some
ai+1 ∈ V (H). Thus, y = y0 → a1 → y1 → a2 → y2 → . . . → . . . ak → ym = y′

with dH(yi, yi+1) = 2 for every i. Hence, we get d′H(y, y
′) ≤ 2m. Therefore,

d′H(y,y′)

2
≤ m = dG⊠2H((x, y), (x

′, y′)). Also,
d′G(x,x′)

2
= 0. Thus,

max{d′H(y,y′)

2
,
d′G(x,x′)

2
} ≤ dG⊠2H((x, y), (x

′, y′)).

Similarly, if y = y1 = y2 = . . . ym−1 = ym = y′, then

max{d′H(y,y′)

2
,
d′G(x,x′)

2
} ≤ dG⊠2H((x, y), (x

′, y′)).
Case 2. There is atleast one i, such that xi ̸= x and j such that yj ̸= y.
Note that in this case, from PG(P ) and PH(P ), we get two subsequences
x = u0 → u1 → u2 → . . . ul−1 → ul = x′ with dG(ui, ui+1) = 2 for every i and
y = v0 → v1 → v2 → . . . vk−1 → vk = y′ with dH(vi, vi+1) = 2 for every i.
Now as dG(ui, ui+1) = 2 and dH(vi, vi+1) = 2 for every i, there is ai+1 ∈ V (G)
and bi+1 ∈ V (H) such that ui → ai+1 → ui+1 and vi → bi+1 → vi+1. Thus,
we get two walks, x = u0 → a1 → u1 → a2 → u2 → . . . al → ul = x′ and
y = v0 → b1 → v1 → b2 → v2 → . . . → bk → vk = y′. Thus d′G(x, x

′) ≤ 2l and
d′H(y, y

′) ≤ 2k.
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Therefore,
d′G(x,x′)

2
≤ l ≤ m and

d′H(y,y′)

2
≤ k ≤ m. Thus,

max{d′G(x,x′)

2
,
d′H(y,y′)

2
} ≤ m.

Now, suppose d′G(x, x
′) = ∞ or d′H(y, y

′) = ∞. If possible, suppose
dG⊠2H((x, y), (x

′, y′)) = m < ∞. Then, using arguments given in converse part,
d′G(x, x

′) < ∞ and d′G(y, y
′) < ∞, which is a contradiction. Now, suppose

dG⊠2H((x, y), (x
′, y′)) = ∞. If possible, suppose, d′G(x, x

′) < ∞ and
d′H(y, y

′) < ∞. Then, by arguments given in first part, dG⊠2H((x, y), (x
′, y′)) < ∞.

Thus, d′G(x, x
′) = ∞ and d′H(y, y

′) = ∞.
Now, we obtain the connectedness of G⊠2 H.

Theorem 2.5. Let G and H be two connected graphs with N2(u) ̸= ∅
∀u ∈ V (G) ∪ V (H).

1. If G and H are both bipartite graphs, then G⊠2 H has four components.

2. If one of the graph G or H is non-bipartite triangle free and other is bipartite,
then G⊠2 H has 2 components.

3. If G and H both are non-bipartite triangle free graphs, then G ⊠2 H is con-
nected.

Proof.

1. Let U1, U2 be two partite sets of G and V1, V2 be two partite sets of H and
let Wij = Ui × Vj for 1 ≤ i, j ≤ 2. Now, if (x, y), (x′, y′) are in different
Wij, then either x and x′ are in different partite sets of G or y and y′ are in
different partite sets of H. Therefore, either d′G(x, x

′) = ∞ or d′H(y, y
′) = ∞

and hence, by above theorem, dG⊠2H((x, y), (x
′, y′)) = ∞. Thus, G⊠2 H has

at least four components Wij.

Now, if (x, y) and (x′, y′) are in same Wij, (i, j ∈ {1, 2}), then x & x′ are
in same partite set of G and y & y′ are in same partite set of H. Thus,
d′G(x, x

′) < ∞ and d′H(y, y
′) < ∞ and hence, dG⊠2H((x, y), (x

′, y′)) < ∞, i.e.,
(x, y) and (x′, y′) are connected by a path in G⊠2 H.
Therefore, there are exactly four components in G⊠2 H.

2. Let G be a bipartite graph and let U1 and U2 be two partite sets of G and let
Wi = Ui×V (H) for 1 ≤ i ≤ 2. If (x, y) and (x′, y′) are in different Wi, then x
and x′ are in different partite sets of G and hence, d′G(x, x

′) = ∞. Therefore,
dG⊠2H((x, y), (x

′, y′)) = ∞ and so, there are at the least two components in
G⊠2 H.
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Further, if (x, y) and (x′, y′) are in same Wi, 1 ≤ i ≤ 2, then x and x′ are in
same partite set and hence, d′G(x, x

′) < ∞. Also, as H is non bipartite and
triangle free, by Proposition 2.3, d′H(y, y

′) < ∞. Thus,
dG⊠2H((x, y), (x

′, y′)) < ∞ and hence (x, y) and (x′, y′) are connected by a
path. Therefore, there are two components in G⊠2 H.

3. Let (x, y), (x′, y′) ∈ V (G ⊠2 H). Then, by Proposition 2.3, d′G(x, x
′) < ∞

and d′H(y, y
′) < ∞. Thus, dG⊠2H((x, y), (x

′, y′)) < ∞ and hence, (x, y) and
(x′, y′) are connected by a path. Thus, G⊠2 H is connected.

3. Diameter, Eccentricity and Radius
In this section, we obtain some more basic graph parameters which are de-

pending on distance between two vertices. For example, diameter, eccentricity and
radius.

Definition 2.1. Let G = (V (G), E(G)) be a graph. Then, we define

1. 2-diameter of G by max{d′G(x, y) : x, y ∈ V (G)} and we denote it by diam2(G).

2. 2-eccentricity of a vertex x in G as max{d′G(x, x′) : x′ ∈ V (G)} and we denote
it by e′(x).

3. 2-radius of G as min{e′(x) : x ∈ V (G)} and we denote it by rad2(G).

4. 2-closed neighborhood of a vertex x in G as {x′ ∈ V (G) : d′G(x, x
′) ≤ i} and

we denote it by N ′
i [x,G].

If we replace d′G(x, x
′) by dG(x, x

′) in above definitions, we get the definition of
usual diameter. eccentricity, radius and closed neighborhood.

Remark 3.2. In general, diam(G) (or rad(G)) and diam2(G) (or rad2(G)) are
different. Note that, diam2(G) (or rad2(G)) is always even and if diam(G)
(or rad(G)) is even, still diam2(G) (or rad2(G)) may be different from diam(G)
(or rad(G)).

We obtained the following relation between diameter of graph G ⊠2 H and 2-
diameter of G and H.

Theorem 3.3. Let G and H be two graphs. Then,

diam(G⊠2 H) = max{diam2(G)
2

, diam2(H)
2

}.

Proof. Let diam(G⊠2 H) = d. Then, for any x, x′ ∈ V (G) and y, y′ ∈ V (H),

dG⊠2H((x, y), (x
′, y′)) ≤ d. Therefore, by Theorem 2.4, max{d′G(x,x′)

2
,
d′H(y,y′)

2
} ≤ d.
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Thus, d′G(x, x
′) ≤ 2d & d′H(y, y

′) ≤ 2d. But, as x, x′ and y, y′ are arbitrary,

diam2(G) ≤ 2d and diam2(H) ≤ 2d. Therefore, max{diam2(G)
2

, diam2(H)
2

} ≤ d.
Conversely, let diam2(G) = d1 and diam2(H) = d2. Then, for any

(x, y), (x′, y′) ∈ V (G⊠2 H), d′G(x, x
′) ≤ d1 and d′H(y, y

′) ≤ d2. Therefore,

dG⊠2H((x, y), (x
′, y′)) = max{d′G(x,x′)

2
,
d′H(y,y′)

2
} ≤ max{d1

2
, d2

2
}. But, as (x, y) and

(x′, y′) are arbitrary, diam(G⊠2 H) ≤ max{d1
2
, d2

2
}.

By similar arguments, the following can be proved.

Theorem 3.4. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs.

1. For (x, y) ∈ V (G⊠2 H), ecc(x, y) = max{ e′(x)
2

, e
′(y)
2

}.

2. rad(G⊠2 H) = max{ rad2(G)
2

, rad2(H)
2

}.

3. For (x, y) ∈ V (G⊠2 H), Ni[(x, y), G⊠2 H] = N ′
2i[x,G]×N ′

2i[y,H], where
Ni[x,G] = {x′ ∈ V (G) : d(x, x′) ≤ i}.

We consider the following non-bipartite graphs:

Definitions [1]

1. A wheel graph Wn is a graph with n + 1 vertices that contains Cn and one
other vertex which is adjacent to every vertex of Cn. The vertex which is
adjacent to every vertex is called center vertex.

2. The Helm graph Hn is the graph obtained from Wn by adding a pendent edge
to each vertex of Cn in Wn.

3. The closed Helm graph CHn is the graph obtained from Hn by adding edges
between pendent vertices.

Example 3.5.

Graph diam(G) diam2(G) rad(G) rad2(G)
C2n+1 (n > 1) n 2n n 2n
Hn (n ≥ 4) 4 6 2 4
CHn (n ≥ 4) 4 6 2 4
Pn (n > 2) n− 1 ∞ [n] ∞

Km,n (m,n > 2,m ̸= n) 2 ∞ 2 ∞
Wn (n > 4) 2 ∞ 2 ∞
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